Индикаторы и сигнализаторы на регулируемом стабилитроне TL431
|
Функциональная схема TL431. Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. Особенность в том, что при помощи внешнего делителя напряжение стабилизации можно изменять в пределах 1,25…30 В. |
Сигнализатор превышения напряжения
. |
Работа такого сигнализатора основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 1,25 В стабилитрон закрыт, через него протекает лишь небольшой ток, как правило, не более 0,3…0,4 мА. В некоторых моделях светодиодов этого тока достаточно для очень слабого свечения. Чтобы этого явления не наблюдалось, достаточно параллельно светодиоду подключить резистор сопротивлением примерно 2…3 КОм. Схема сигнализатора превышения напряжения показана на рисунке 2.Если же напряжение на управляющем электроде превысит 1,25 В, стабилитрон откроется и засветится светодиод. Необходимое ограничение тока через стабилитрон и светодиод обеспечивает резистор 1 kOm. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора. Прирасчете не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36 В. Этот параметр также превышать нельзя. Напряжение на управляющем электроде, при котором загорается светодиод (Uз) задается делителем. Параметры делителя рассчитываются по формуле: R2 = 1,25*R1/(Uз – 1,25). Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настойка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного. |
Индикатор пониженного напряжения
Отличие этой схемы от предыдущей в том, что светодиод включен по-другому. Такое включение называется инверсным, поскольку светодиод зажигается в том случае, когда микросхема закрыта. В случае, если контролируемое напряжение превышает порог установленный делителем микросхема открыта, и ток протекает через резистор R3 и выводы 3 – 2 (катод – анод) микросхемы. На микросхеме в этом случае присутствует падение напряжения 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлен диод. Некоторые типы светодиодов, например синие, белые и некоторые типы зеленых, зажигаются, когда напряжение на них превышает 2,2 В. В этом случае вместо диода устанавливаются перемычки из проволоки. Когда контролируемое напряжение станет меньше установленного делителем R1, R2 микросхема закроется, напряжение на ее выходе будет намного больше 2 В, поэтому светодиод зажжется. Пределы переключения при данных номиналах при U=13,15-13,0 V. При этом ток светодиода скачкообразно изменяется от 0,2 до 3,0 mA. |
При необходимости подключения исполнительного устройства можно использовать правую часть чертежа. Либо реализовать задуманное на тиристоре или сразу подключив оптопару со встроенным тиристором.
Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рисунке 4.
В этом индикаторе применен двухцветный светодиод HL1. Если контролируемое напряжение превышает пороговое значение, светится красный светодиод, а если напряжение понижено, то горит зеленый. В случае, когда напряжение находится вблизи заданного порога (примерно 0,05…0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет вполне определенную крутизну. |
Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рисунке 5.
Условно на одной схеме показано сразу несколько датчиков. Если это будет фототранзистор, то получится фотореле. Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит. По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (1,25 В), стабилитрон открывается и зажигается светодиод. Если вместо фототранзистора ко входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться. Эту же схему можно применить в качестве датчика влажности. Для этого вместо терморезистора или фототранзистора следует подключить электроды на некотором расстоянии друг от друга. При уменьшении влажнеости до уровня, определенного при настройке, светодиод зажжется. Порог срабатывания устройства во всех случаях устанавливается с помощью переменного резистора R1. |
Кроме перечисленных световых индикаторов возможно собрать и звуковой индикатор.
Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга. Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал. В качестве излучателя можно применить излучатель ЗП-3. питание устройства от напряжения 5…12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной. |
Ниже приводится схема и печатка еще одного светодиодного индикатора с использованием микросхемы типа TL(LM)431 и дается описание ее работы.
Если напряжение на ее управляющем электроде (R) меньше, чем 1,25 В, то выходной транзистор этой микросхемы заперт. При достижении управляющим напряжением оговоренного уровня транзистор микросхемы переходит в насыщенное состояние. Максимально допустимое напряжение между выводами катода (С) и анода (А) этой микросхемы составляет 36 В. Допустимый ток через микросхему -1 ...100 мА. Потребление тока цепью управления микросхемы или ток через управляющий электрод (R) ничтожно мал - менее 0,1 мА. Светодиод HL1 выбирают зеленого цвета свечения. Он излучает свет, если напряжение на управляющем электроде DA1 увеличить до 1,25 В. Это достигается регулировкой подстроечного сопротивления R1 при желаемом напряжении источника питания схемы. Поскольку через микросхему DA1 протекает небольшой ток даже в том случае, когда ее выходной транзистор находится в запертом состоянии, а свечения светодиода HL1 в этом режиме не должно быть, светодиод зашунтирован резистором R3. Резисторы R5, R6 являются балластными для светодиода HL2. При снижении напряжения питания схемы ниже предполагаемого минимума микросхема DA1 запирается. Обратным для него напряжением запирается и диод VD1, погасает светодиод HL1, а светодиод HL2 зажигается. Для большей наглядности этого критического для источника питания U (аккумулятора) состояния в качестве светодиода HL2 целесообразно использовать «мигающий» светодиод красного цвета свечения. Он будет мигать с частотой примерно 0,8...1 Гц. Если напряжение питания U находится в норме, то свечение (мигание) светодиода HL2 прекращается - открытый выходной транзистор микросхемы DA1 через диод VD1 блокирует этот светодиод. Резистор R7 полностью исключает подсветку светодиода HL2 в вышеописанном режиме. В зависимости от типа использованных в схеме светодиодов возможно потребуется подобрать номиналы резисторов R3, R7. Их величины уменьшаются до погасания свечения светодиодов. Величины R4 и R6 определяют при настройке схемы на максимальную яркость свечения светодиодов. |
В заключение хотелось бы обратить внимание читателей, что при практическом использовании вышеописанной схемы LED индикатора понижения напряжения питания целесообразно включить крайние выводы подстроечного сопротивления R1 в схему через ограничительные резисторы. Это обеспечит более точную установку напряжения переключения светодиодов и облегчит процесс настройки схемы.
Дерзайте, господа творческие личности!
Вот, еще нашел кой какой материал в других источниках. Извините, если повторюсь...
Описание регулируемого стабилитрона TL431.
Микросхема TL431 - это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.
Основные технические характеристики TL431:
Точность опорного источника напряжения TL431 зависит от 6-той буквы в обозначении:
Видно, что TL431 может работать в широком диапазоне напряжений, но вот токовые способности не так велики всего 100 мА, да и мощность рассеиваемая такими корпусами не превышает сотен мили Ватт. Для получения более серьезных токов интегральный стабилитрон стоит использовать как источник опорного напряжения, регулирующую функцию доверив мощным транзисторам. |
TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники. Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток. |
Цоколевка TL431TL431 имеет три вывода: катод, анод, вход. |
Аналоги TL431Отечественными аналогами TL431 являются:
|
К зарубежным аналогам можно отнести:
|
Схемы включения TL431
Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр - контроль напряжение.
Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.
Стабилизатор тока на TL431Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2. |
Индикатор превышения напряженияРабота данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм. R3 = (Uпит. – Uh1 – Uda)/Ih1 где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В. Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле: R2 = 2,5 х Rl/(Uз - 2,5) Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный. Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение. |
Проверка исправности TL431
Выше приведенной схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветиться , то TL431 исправен.
Индикатор низкого напряженияРазница данной схемы от предшествующей в том, что светодиод подключен по иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта. Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода. В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится. |
Индикатор изменения напряженияЕсли необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом: |
Работа TL431 совместно с датчикамиЕсли необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия. |
TL431 в схеме со звуковой индикациейПомимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже. Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм. Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал. |
Калькулятор для TL431
Для облегчения расчетов можно воспользоваться калькулятором:
Параметрический стабилизатор Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет ‘запрограммирована’ TL431 можно определить по формуле: |
Компенсационные стабилизаторы напряженияПринцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора (рис 1.) Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается. |
Стабилизатор токаСледующая схема представляет собой термостабильный стабилизатор тока. Резистор R2 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжения 2,5 В. Таким образом если пренебречь током базы по сравнению с током коллектора, то получим ток на нагрузке Iн=2,5/R2. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах. |
Реле времениTL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь. |
Простое зарядное устройство для литиевого аккумулятора.Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения: Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. А теперь список номиналов компонентов схемы:
|